General information:
Name:
Computer modeling of the casting solidification
Code:
UBPJO-216
Profile of education:
Academic (A)
Lecture language:
English
Semester:
Fall
Responsible teacher:
dr hab. inż. Burbelko Andriy (abur@agh.edu.pl)
Academic teachers:
dr hab. inż. Burbelko Andriy (abur@agh.edu.pl)
Module summary

Studying the possibilities of the solidification modeling. Practical application of the modeling of alloys solidification for foundry technology verification and the castings quality estimation.

Description of learning outcomes for module
MLO code Student after module completion has the knowledge/ knows how to/is able to Connections with FLO Method of learning outcomes verification (form of completion)
Social competence
M_K001 Student understands how important is the role of CAST CAE software for foundry practice. Completion of laboratory classes,
Execution of laboratory classes,
Participation in a discussion
Skills
M_U001 Student will possess the basic skills how to use the ProCAST software in the verification of the foundry technologies. Execution of laboratory classes
Knowledge
M_W001 Student has basic knowledge in the field of the numerical modeling of solidification processes. Participation in a discussion,
Activity during classes
M_W002 Student knows how to check the influence of the condition of the proposed technology of the casting production on the quality of produced castings. Completion of laboratory classes,
Execution of laboratory classes
FLO matrix in relation to forms of classes
MLO code Student after module completion has the knowledge/ knows how to/is able to Form of classes
Lecture
Audit. classes
Lab. classes
Project classes
Conv. seminar
Seminar classes
Pract. classes
Zaj. terenowe
Zaj. warsztatowe
Others
E-learning
Social competence
M_K001 Student understands how important is the role of CAST CAE software for foundry practice. + - - - - - - - - - -
Skills
M_U001 Student will possess the basic skills how to use the ProCAST software in the verification of the foundry technologies. - - + - - - - - - - -
Knowledge
M_W001 Student has basic knowledge in the field of the numerical modeling of solidification processes. + - - - - - - - - - -
M_W002 Student knows how to check the influence of the condition of the proposed technology of the casting production on the quality of produced castings. - - + - - - - - - - -
Module content
Lectures:

Purposes, scope and capabilities of the numerical modeling of the solidification processes. Characteristics of the numerical simulation methods. Classification of the models used for solidification modeling. Initial and boundary conditions in the analyzed tasks. Influence of the solidification kinetics and source of the phase transformation (latent) heat on the cooling curves. Non-equilibrium solidification, nucleation and growth of grains. Statistical theory of the solidification.
Characteristics of the commercial CAST CAE software packages. Modeling of the some foundry technology.

Laboratory classes:

1. Basic skills in the operation of CAST CAE commercial software (ProCAST, ESI Group).
2. Geometry of castings: import, repairing and mesh generation.
3. Description of the border conditions, initial conditions and properties of the materials.
4. Start and monitoring of the solution.
5. Result visualization. Capabilities of the post-processing.
6. Using of the simulation results for the improvement of the foundry technology.

Student workload (ECTS credits balance)
Student activity form Student workload
Summary student workload 105 h
Module ECTS credits 4 ECTS
Participation in lectures 15 h
Participation in laboratory classes 15 h
Preparation for classes 30 h
Realization of independently performed tasks 30 h
Preparation of a report, presentation, written work, etc. 15 h
Additional information
Method of calculating the final grade:

The final evaluation will be calculated as mean average value taking into account the completion and execution of laboratory classes and students’ active participation during classes.

Prerequisites and additional requirements:

Basic skills in the operating system MS Windows (7 and higher).
Basic knowledge in the field of theory of the metallic alloys solidification.
Basic knowledge in the field of heat transfer.
Basic knowledge in the field of numerical solution of the partial differential equations.

Recommended literature and teaching resources:

1. Stefanescu D.M. Science and engineering of casting solidification. New York, Springer, 2009, p. 402.
2. Numerical modeling in materials science and engineering / Michel Rappaz, Michel Bellet, Michel Deville ; transl. by Ray Snyder., Berlin, Springer, 2003, 540 s.
3. Dantzig J.A., Rappaz, M. Solidification. Lausanne, EPFL Press, 2009, p. 621.
4. Numerical prediction of flow, heat transfer, turbulence and combustion : selected works of professor D. Brian Spalding / ed. by Suhas V. Patankar [et al.]. New York, Pergamon Press, 1983, p. 430.
5. Mochnacki. B., Suchy J.S. Numerical methods in computations of foundry processes. Kraków, Polish Foundrymen’s Technical Association, 1995, p. 325

Scientific publications of module course instructors related to the topic of the module:

In English
A.A. Burbelko, J. Początek, M. Krolikowski: Application of Averaged Voronoi Polyhedron in the Modelling of Crystallisation of Eutectic Nodular Graphite Cast Iron. Archives of Foundry Engineering. Vol. 13, Iss. 1, 2013, p.134-140.
A.A. Burbelko, D. Gurgul, W. Kapturkiewicz, J. Początek, M. Wrobel: Stochastic nature of the casting solidification displayed by micro-modelling and cellular automata method. Solid State Phenomena. Vol. 197, 2013, pp. 101-106.
D. Szeliga, K. Kubiak, A. Burbelko, R. Cygan, W. Ziaja: Modelling of grain microstructure of IN-713C castings. Solid State Phenomena. Vol. 197, 2013, pp. 83-88.
D. Gurgul, A.Burbelko, M.Gorny, W. Kapturkiewicz: Thin wall ductile iron castings modeling by cellular automaton. in: EPD Congress 2013, ed. by M.L. Free, A.H. Siegmund. TMS (The Minerals, Metals & Materials Society), John Wiley & Sons, Inc., 2013, p. 47-54.
Burbelko, J. Początek: Averaged Voronoi polyhedron in the diffusion controlled solidification modeling. The TMS 2013 Annual Meeting Supplemental Proceedings. TMS (The Minerals, Metals & Materials Society), John Wiley & Sons, Inc., 2013, p. 523-530.
Burbelko, J. Początek: Application of Averaged Voronoi Polyhedron in the modeling of peritectic transformation. W: CSSCR2013 : the 3rd international symposium on Cutting edge of Computer Simulation of Solidification, Casting and Refining : May 20–23, 2013, Stockholm, Sweden and Helsinki, Finland : abstracts book. — [Finland : s. n.], 2013. — S. 45,
W. Kapturkiewicz, A. Burbelko, M.Gorny: Computer modeling of ductile iron solidification for thin walled casting. W: CSSCR2013 : the 3rd international symposium on Cutting edge of Computer Simulation of Solidification, Casting and Refining : May 20–23, 2013, Stockholm, Sweden and Helsinki, Finland : abstracts book. — [Finland : s. n.], 2013. — S. 81–82
D. Gurgul, A. Burbelko, M. Wrobel, W. Kapturkiewicz, E. Guzik: Numerical forecasting of density changes of nodular cast iron during solidification by cellular automaton. W: CSSCR2013 : the 3rd international symposium on Cutting edge of Computer Simulation of Solidification, Casting and Refining : May 20–23, 2013, Stockholm, Sweden and Helsinki, Finland : abstracts book. — [Finland : s. n.], S. 126.
Burbelko, J. Początek, D. Gurgul, M. Wrobel: Using of the Averaged Voronoi Polyhedron for the uninodular solidification modeling : [abstract] W: Solidification and gravity’13 : sixth international conference : Miskolc–Lillafured, Hungary, September 2–5, 2013. — [Miskolc : University of Miskolc], 2013. — S. 27. — Bibliogr. s. 27
Burbelko, D. Gurgul, W. Kapturkiewicz, E. Guzik: Modeling of the density changes of nodular cast iron during solidification by CA-FD method : [abstract] W: Solidification and gravity’13 : sixth international conference : Miskolc–Lillafured, Hungary, September 2–5, 2013. — [Miskolc : University of Miskolc], 2013. — S. 45.
R. Dańko, J. Dańko, A. Burbelko, M. Skrzyński: Core blowing process – assessment of core sands properties and preliminary model testing. Archives of Foundry Engineering / Polish Academy of Sciences. Commission of Foundry Engineering. — 2014, vol. 14, iss. 1, s. 25–28
A. A. Burbelko, D. Gurgul, M. Krolikowski, M. Wrobel: Cellular automaton modeling of ductile iron density changes at the solidification time. Archives of Foundry Engineering / Polish Academy of Sciences. Commission of Foundry Engineering. — 2013 vol. 13 iss. 4, s. 9–14
D. Szeliga, K. Kubiak, A. Burbelko, M. Motyka, J. Sieniawski: Modeling of Directional Solidification of Columnar Grain Structure in CMSX-4 Nickel Based Superalloy Casting. in: Journal of Materials Engineering and Performance. 2014, vol. 23, no. 3, p. 1088-1095, DOI: 10.1007/s11665-013-0820-8
W. Kapturkiewicz, A. Burbelko, M. Gorny: Undercooling, Cooling Curves and Nodule Count for Neareutectic Thin-walled Ductile Iron Castings. In: ISIJ International, 2014, Vol. 54, No. 2, pp. 288–293, DOI: http://dx.doi.org/10.2355/isijinternational.54.288
A.A. Burbelko, J. Początek, D. Gurgul, M. Wrobel: Using of the Averaged Voronoi Polyhedron for the Equiaxed Solidification Modeling. In: Materials Science Forum, Vols. 790-791 (2014) pp. 91-96, Doi:10.4028/www.scientific.net/MSF.790-791.91
A.A. Burbelko, D. Gurgul, W. Kapturkiewicz, E. Guzik: Modeling of the Density Changes of Nodular Cast Iron During Solidification by CA-FD Method. In: Materials Science Forum, Vols. 790-791 (2014) pp. 140-145, DOI:10.4028/www.scientific.net/ MSF.790-791.140
A. Burbelko, J. Początek, D. Gurgul, P. Malatyńska, M. Wrobel: Averaged Voronoi polyhedron in the peritectic transformation modelling. Inżynieria Materiałowa. 2014, nr 2, 97-101.
A. Burbelko, J. Początek, D. Gurgul and M. Wrobel: Micromodeling of the Diffusion-Controlled Equiaxed Peritectic Solidification. Steel Research Int. 2014, 6, 1010-1017. DOI: 10.1002/srin.201300174
A. Burbelko, W. Kapturkiewicz: Undercooling, cooling curves and nodule count for hypo-, hyper- and eutectic thin-walled ductile iron castings. In.: Advances in the Science and Engineering of Casting Solidification. An MPMD Symposium Honoring Doru Michael Stefanescu. TMS (The Minerals, Metals & Materials Society), March 15-19, 2015, Orlando, Florida, USA, 2015, pp. 313-321.
A. Burbelko, D. Gurgul, E. Guzik, W. Kapturkiewicz: Cellular Automaton Simulation for Volume Changes of Solidifying Nodular Cast Iron. Archives of Metallurgy and Materials, 2015, V. 60, Iss. 3B, pp. 2379-2384. DOI: 10.1515/amm-2015-0388.
M. Wrobel, A. Burbelko, D. Gurgul: Modelling of change in density of nodular cast iron during solidification using cellular automaton. Archives of Metallurgy and Materials, 2015, V. 60, Iss. 4, pp.2709-2713. DOI: 10.1515/amm-2015-0436.

In Polish
M. Wrobel, A. Burbelko, D. Gurgul: Modelowanie początkowego etapu wzrostu austenitu z przechłodzonej cieczy w układzie Fe-C-Si metodą pola fazowego. Archives of Foundry Engineering, 2015, V. 15, Iss. 4, pp. 159-162.
T. Wiktor, A. Burbelko: Symulacja spiętrzania stopu w komorze zimnokomorowej maszyny ciśnieniowej. Archives of Foundry Engineering, 2015, V. 15, Iss. 4, pp. 151-154.
Wykorzystanie programow komputerowych do obliczeń termodynamicznych w procesach metalurgicznych : metoda CALPHAD — [The use of computer programs for thermodynamic calculations in metallurgy processes : the CALPHAD method] / oprac. A. Burbelko, M. Wrobel // W: Procesy metalurgiczne i odlewnicze stopow żelaza : podstawy fizykochemiczne / Mariusz Holtzer. — Warszawa : Wydawnictwo Naukowe PWN, 2013. — ISBN: 978-83-01-17362-3. — S. 512–542.
M. Wrobel, A. Burbelko, D. Gurgul: Modelowanie zmian gęstości żeliwa sferoidalnego podczas krystalizacji za pomocą automatu komorkowego — Modelling of change in density of nodular cast iron during solidification using cellular automaton. W: XLI Szkoła Inżynierii Materiałowej : Krakow – Krynica, 24–27 IX 2013 : monografia / pod red. Jerzego Pacyny ; Akademia Gorniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydział Inżynierii Metali i Informatyki Przemysłowej. — Krakow : Wydawnictwo Naukowe AKAPIT, 2013 + dysk Flash. — Na okł. tyt.: Prace XLI Szkoły Inżynierii Materiałowej. — ISBN: 978-83-63663-35-3. — S. 369–373.
A. A. Burbelko, J. Początek: Analiza rozkładu węgla w ziarnie eutektycznym żeliwa sferoidalnego metodą uśrednionego wielościanu Voronoia. Archives of Foundry Engineering / Polish Academy of Sciences. Commission of Foundry Engineering. — 2013 vol. 13 spec. iss. 2, s. 29–34
M. Wrobel, A. Burbelko: Metoda CALPHAD – nowoczesna technika pozyskiwania danych termodynamicznych. Archives of Foundry Engineering, 2014, V. 14, Special Issue 3, 79-84.
A. Burbelko, J. Początek: Modelowane wzrostu dyfuzyjnego ziaren rownoosiowych metodą uśrednionego wielościanu Voronoia. Archives of Foundry Engineering, 2014, V. 14, Special Issue 3, 15-20.
A.A. Burbelko, D. Gurgul, W. Kapturkiewicz, M. Wrobel, M. Krolikowski: Możliwości mikromodelowania krystalizacji żeliwa z grafitem kulkowym. Polska Metalurgia w latach 2011-2014. Monografia. Red. K. Świątkowski. Komitet Metalurgii PAN. Krakow, 2014. 407-420.
M. Krolikowski, A. Burbelko, D. Kwaśniewska-Krolikowska: Wykorzystanie tomografii komputerowej w defektoskopii odlewow z żeliwa sferoidalnego, Archives of Foundry Engineering, 2014, V. 14, Iss 4., pp. 71-16.

Additional information:

1. E. Fraś: Krystalizacja metali, PWN, W-wa, 2003
2. W. Kapturkiewicz: Modelowanie krystalizacji odlewów żeliwnych. Wyd. Akapit, 2003
3. A. Burbelko: Mezomodelowanie krystalizacji metodą automatu komórkowego. Seria Rozprawy
Monografie, nr 135, Kraków, UWND, 2004.